https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Thin-wall effects and anisotropic deformation mechanisms of an additively manufactured Ni-based superalloy https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:44014 to <001> is indicated when the specimen becomes thinner. The residual stress shows no thickness dependence, and at the subsurface the residual stress reaches the same level as the yield strength. Due to the rough as-built surface, a roughness compensation method for mechanical properties of thin-walled structures is outlined and demonstrated. Tensile tests from room temperature up to 700℃ have been carried out. Anisotropic mechanical behavior is found at all temperatures, which is strongly related to the anisotropic texture evolution. Stronger texture evolution and grain rotations are discovered when the tensile loading is applied along the building direction. The mechanical behavior has been compared to a wrought material, where the high dislocation density and the subgrain structure of the LPBF material result in a higher yield strength. Combining the statistical texture analysis by neutron diffraction with mechanical testing, EBSD grain orientation mapping and the investigation of dislocation structures using transmission electron microscopy, this work illustrates the significance of texture for the thin-wall effect and anisotropic mechanical behavior of LPBF materials.]]> Wed 05 Oct 2022 15:27:08 AEDT ]]> Anisotropic deformation and fracture mechanisms of an additively manufactured ni-based superalloy https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:38699 −5 and 10−6s−1) tensile testing (SSRT) at 700 °C. LPBF HX typically exhibits an elongated grain structure along the building direction (BD) and the texture analysis from the combination of neutron diffraction and EBSD discloses a major texture component <011> and a minor texture component <001> along BD, and a texture component <001> in the other two sample directions perpendicular to BD. Two types of tests have been performed, the horizontal tests where the loading direction (LD) is applied perpendicular to BD, and the vertical tests where LD is applied parallel to BD. The vertical tests exhibit lower strength but better ductility, which is explained by the texture effect and the elongated grain structure. A comparison of the mechanical behavior to the wrought HX shows that LPBF HX has better yield strength due to the high dislocation density as proved by TEM images. Creep voids are observed at grain boundaries in SSRT for both directions and are responsible for the poor ductility of the horizontal tests. The vertical ductility in SSRT maintains the same level as the reference tensile test at the strain rate of 10−3s−1, due to the extra deformation capacity contributed by the discovered deformation twinning and lattice rotation. The deformation twinning, which is only observed in the vertical tests and has not been found in the conventionally manufactured HX, is beneficial to maintain the ductility but does not strengthen the material.]]> Thu 13 Jan 2022 15:37:12 AEDT ]]>